Bi- and Trilinear Schrödinger Estimates in One Space Dimension with Applications to Cubic Nls and Dnls

نویسنده

  • AXEL GRÜNROCK
چکیده

The Fourier transforms of the products of two respectively three solutions of the free Schrödinger equation in one space dimension are estimated in mixed and, in the first case, weighted L norms. Inserted into an appropriate variant of the Fourier restriction norm method, these estimates serve to prove local well-posedness of the Cauchy problem for the cubic nonlinear Schrödinger (NLS) equation with data u0 in the function spaces L̂x := Ĥ r 0 , where for s ∈ R the spaces Ĥr s are defined by their norms ‖u0‖Ĥr s := ‖〈ξ〉sû0‖Lr′ ξ , 1 r + 1 r = 1. Similar agruments, combined with a gauge transform, lead to local well-posedness of the Cauchy problem for the derivative nonlinear Schrödinger (DNLS) equation with data u0 ∈ Ĥ1 2 . In the local result on cubic NLS the parameter r is allowed in the full subcritical range 1 < r < ∞, while for DNLS we assume 1 < r ≤ 2. In the special case r = 2 both results coincide with the optimal ones on the H scale. Furthermore, concerning the cubic NLS equation, it is shown by a decomposition argument that the local solutions extend globally, provided 2 ≥ r > 5 3 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Bounds for the Cubic Nonlinear Schrödinger Equation (nls) in One Space Dimension

This article is concerned with the small data problem for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, and short range modifications of it. We provide a new, simpler approach in order to prove that global solutions exist for data which is small in H. In the same setting we also discuss the related problems of obtaining a modified scattering expansion for the solution, ...

متن کامل

Integrable discretizations of derivative nonlinear Schrödinger equations

We propose integrable discretizations of derivative nonlinear Schrödinger (DNLS) equations such as the Kaup–Newell equation, the Chen–Lee–Liu equation and the Gerdjikov–Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reduc...

متن کامل

A lower bound for the power of periodic solutions of the defocusing Discrete Nonlinear Schrödinger equation

We derive lower bounds on the power of breather solutions ψn(t) = e −iΩtφn, Ω > 0 of a Discrete Nonlinear Schrödinger Equation with cubic or higher order nonlinearity and site-dependent anharmonic parameter, supplemented with Dirichlet boundary conditions. For the case of a defocusing DNLS, one of the lower bounds depends not only on the dimension of the lattice, the lattice spacing, and the fr...

متن کامل

Focusing Quantum Many-body Dynamics: the Rigorous Derivation of the 1d Focusing Cubic Nonlinear Schrödinger Equation

We consider the dynamics of N bosons in one dimension. We assume that the pair interaction is attractive and given by Nβ−1V (N ·) where ∫ V 6 0. We develop new techniques in treating the N−body Hamiltonian so that we overcome the diffi culties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity...

متن کامل

On the One-dimensional Cubic Nonlinear Schrödinger Equation below L2 Tadahiro Oh and Catherine Sulem

In this paper, we review several recent results concerning well-posedness of the one-dimensional, cubic Nonlinear Schrödinger equation (NLS) on the real line R and on the circle T for solutions below the L-threshold. We point out common results for NLS on R and the so-called Wick ordered NLS (WNLS) on T, suggesting that WNLS may be an appropriate model for the study of solutions below L(T). In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005